首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5136篇
  免费   1035篇
  国内免费   598篇
测绘学   145篇
大气科学   1229篇
地球物理   2308篇
地质学   1620篇
海洋学   671篇
天文学   119篇
综合类   55篇
自然地理   622篇
  2024年   6篇
  2023年   31篇
  2022年   48篇
  2021年   115篇
  2020年   199篇
  2019年   205篇
  2018年   179篇
  2017年   248篇
  2016年   224篇
  2015年   205篇
  2014年   275篇
  2013年   478篇
  2012年   168篇
  2011年   229篇
  2010年   208篇
  2009年   350篇
  2008年   449篇
  2007年   390篇
  2006年   340篇
  2005年   306篇
  2004年   258篇
  2003年   202篇
  2002年   191篇
  2001年   161篇
  2000年   141篇
  1999年   160篇
  1998年   162篇
  1997年   156篇
  1996年   115篇
  1995年   112篇
  1994年   106篇
  1993年   103篇
  1992年   62篇
  1991年   45篇
  1990年   34篇
  1989年   36篇
  1988年   28篇
  1987年   10篇
  1986年   14篇
  1985年   5篇
  1984年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1954年   3篇
排序方式: 共有6769条查询结果,搜索用时 31 毫秒
11.
A numerical assessment study of tsunami attack on the rubble mound breakwater of Haydarpasa Port, located at the southern entrance of the Istanbul Bosphorus Strait in the Sea of Marmara, Turkey, is carried out in this study using a Volume-Averaged Reynolds-Averaged Navier-Stokes solver, IHFOAM, developed in OpenFOAM® environment. The numerical model is calibrated with and validated against the data from solitary wave and tsunami overflow experiments representing tsunami attack. Furthermore, attack of a potential tsunami near Haydarpasa Port is simulated to investigate effects of a more realistic tsunami that cannot be generated in a wave flume with the present state of the art technology. Discussions on practical engineering applications of this type of numerical modeling studies are given focusing on pressure distributions around the crown-wall of the rubble mound breakwater, and the forces acting on the single stone located behind the crown-wall at the rear side of the breakwater. Numerical modeling of stability/failure mechanism of the overall cross-section is studied throughout the paper.The present study shows that hydrodynamics along the wave flume and over the breakwater can be simulated properly for both solitary wave and tsunami overflow experiments. Stability of the overall cross-section can only be simulated qualitatively for solitary wave cases; on the other hand, the effect of the time elapsed during tsunami overflow cannot be reflected in the simulations using the present numerical tool. However, the stability of the overall cross-section under tsunami overflow is assessed by evaluating forces acting on the rear side armor unit supporting the crown-wall of the rubble mound breakwater as a practical engineering application in the present paper. Furthermore, two non-dimensional parameters are derived to discuss the stability of this armor unit; and thus, the stability condition of the overall cross-section. Approximate threshold values for these non-dimensional parameters are presented comparing experimental and numerical results as a starting point for engineers in practice. Finally, investigations on the solitary wave and tsunami overflow experiments/simulations are extended to the potential tsunami simulation in the scope of both representation of a realistic tsunami in a wave flume and stability of the rubble mound breakwater.  相似文献   
12.
Soil moisture has a pronounced effect on earth surface processes. Global soil moisture is strongly driven by climate, whereas at finer scales, the role of non‐climatic drivers becomes more important. We provide insights into the significance of soil and land surface properties in landscape‐scale soil moisture variation by utilizing high‐resolution light detection and ranging (LiDAR) data and extensive field investigations. The data consist of 1200 study plots located in a high‐latitude landscape of mountain tundra in north‐western Finland. We measured the plots three times during growing season 2016 with a hand‐held time‐domain reflectometry sensor. To model soil moisture and its temporal variation, we used four statistical modelling methods: generalized linear models, generalized additive models, boosted regression trees, and random forests. The model fit of the soil moisture models were R2 = 0.60 and root mean square error (RMSE) 8.04 VWC% on average, while the temporal variation models showed a lower fit of R2 = 0.25 and RMSE 13.11 CV%. The predictive performances for the former were R2 = 0.47 and RMSE 9.34 VWC%, and for the latter R2 = 0.01 and RMSE 15.29 CV%. Results were similar across the modelling methods, demonstrating a consistent pattern. Soil moisture and its temporal variation showed strong heterogeneity over short distances; therefore, soil moisture modelling benefits from high‐resolution predictors, such as LiDAR based variables. In the soil moisture models, the strongest predictor was SAGA (System for Automated Geoscientific Analyses) wetness index (SWI), based on a 1 m2 digital terrain model derived from LiDAR data, which outperformed soil predictors. Thus, our study supports the use of LiDAR based SWI in explaining fine‐scale soil moisture variation. In the temporal variation models, the strongest predictor was the field‐quantified organic layer depth variable. Our results show that spatial soil moisture predictions can be based on soil and land surface properties, yet the temporal models require further investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
13.
Streamflow modelling results from the GR4H and PDM hydrological models were evaluated in two Australian sub-catchments, using (1) calibration to streamflow and (2) joint-calibration to streamflow and soil moisture. Soil moisture storage in the models was evaluated against soil moisture observations from field measurements. The PDM had the best performance in terms of both streamflow and soil moisture estimations during the calibration period, but was outperformed by GR4H during validation. It was also shown that the soil moisture estimation was improved significantly by joint-calibration for the case where streamflow and soil moisture estimations were poor. In other cases, addition of the soil moisture constraint did not degrade the results. Consequently, it is recommended that GR4H be used, in preference to the PDM, in the foothills of the Murrumbidgee catchment or other Australian catchments with semi-arid to sub-humid climate, and that soil moisture data be used in the calibration process.  相似文献   
14.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
15.
ABSTRACT

Developing a general framework to capture the complexities associated with the non-linear and adaptive nature of farmers facing water resources scarcity is a challenging problem. This paper integrates agent-based modelling (ABM) and a data mining method to develop a hybrid socio-hydrological framework to provide future insights for policy-makers. The data associated with the farmers’ main characteristics were collected through field surveys and interviews. Afterwards, the association rule was employed to discover the main patterns representing the farmers’ agricultural decisions. The discovered patterns were then used as the behavioural rules in ABM to simulate the agricultural activities. The proposed framework has been was applied to explore the interactions between agricultural activities and the main river feeding the Urmia-Lake, Iran. The outcomes indicate that farmers’ acquisitive traits and belongings have significant impacts on their socio-hydrological interactions. The reported values of the efficiency criteria may support the satisfactory performance of the proposed framework.  相似文献   
16.
Weathering of bedrock creates and occludes permeability, affecting subsurface water flow. Often, weathering intensifies above the water table. On the contrary, weathering can also commence below the water table. To explore relationships between weathering and the water table, a simplified weathering model for an eroding hillslope was formulated that takes into account both saturated and unsaturated subsurface water flow (but does not fully account for changes in dissolved gas chemistry). The phreatic line was calculated using solutions to mathematical treatments for both zones. In the model, the infiltration rate at the hill surface sets both the original and the eventual steady-state position of the water table with respect to the weathering reaction front. Depending on parameters, the weathering front can locate either above or below the water table at steady state. Erosion also affects the water table position by changing porosity and permeability even when other hydrological conditions (e.g. hydraulic conductivity of parent material, infiltration rate at the surface) do not change. The total porosity in a hill (water storage capacity) was found to increase with infiltration rate (all else held constant). This effect was diminished by increasing the erosion rate. We also show examples of how the infiltration rate affects the position of the water table and how infiltration rate affects weathering advance. Published 2020. This article is a U.S. Government work and is in the public domain in the USA  相似文献   
17.
The coastal plain of the Río de la Plata constitutes a large wetland which develops on the right margin of the river estuary. Anthropic activities such as intensive exploitation of groundwater carried out in the vicinity of the wetland can modify the natural hydrological regime. The aim of this work is to asses the effects of intensive aquifer exploitation in coastal wetlands using hydrogeological models. Such models allow to evaluate changes in the environmental conditions of wetland at regional level. The hydrogeological model exposed in this work shows how the intensive groundwater exploitation affects the wetland area, generating important variations both in the groundwater flows and in the salinity of the groundwater. Identification of these modifications to the environment is important to generate guidelines leading to minimize these affectations.  相似文献   
18.
Researchers have associated channel-forming flows with reach-average shear stresses close to the entrainment threshold for the surface D50 . We conducted experiments using a model of a generic steep, gravel–cobble stream to test this association. Our results suggest that channel-forming flows fully mobilize the D50 , and produce shear stresses close to the entrainment threshold for the largest grains in the bed. The channel dimensions were set by flows capable of mobilizing between 85% and 90% of the bed surface, which produced a brief period of lateral instability lasting about 1 h, followed by a prolonged period of relative stability during which modest adjustments occurred, but during which the reach-average hydraulics remained about the same. The adjustments during the unstable phase of the experiments are characterized by rapid bank erosion, extensive deposits on the channel bed and a restructuring of the major morphologic elements of the stream. The adjustments during the stable phase of the experiments involved barform migration and bed surface coarsening but did not appreciably modify the physical template established by the end of the unstable phase. The behaviour we observed is not consistent with the concept of a dynamic equilibrium associated with a formative flow that is just capable of entraining the bed surface D50 . Instead, it suggests that rapid adjustments occur once a stability threshold is exceeded, which creates a template that constrains channel activity until another event drives the system across the stability threshold, and re-sets the template. While we believe that it is probably too simplistic to associate a channel-forming discharge with the entrainment threshold for a single grain size, our results suggest that the D95 is a more logical choice than the D50 © 2020 John Wiley & Sons, Ltd.  相似文献   
19.
Sediment is sorted in river bends under the influence of gravity that pulls the heavier grains downslope and secondary flow that drags the finer grains upslope. Furthermore, when dunes are present, sediment is also sorted vertically at the dune lee side. However, sorting functions are poorly defined, since the relation to transverse bed slope and the interaction between lateral and vertical sorting is not yet understood for lack of data under controlled conditions. The objective of this study is to describe lateral sorting as a function of transverse bed slope and to gain an understanding of the interaction between lateral and vertical sorting in river bends. To this end, experiments were conducted with a poorly sorted sediment mixture in a rotating annular flume in which secondary flow intensity can be controlled separately from the main flow velocity, and therefore transverse bed slope towards the inner bend and dune dimensions can be systematically varied. Sediment samples were taken along cross-sections at the surface of dune troughs and dune crests, and over the entire depth at the location of dune crests (bulk samples), which enabled comparison of the relative contribution of vertical sorting by dunes to lateral sorting by the transverse bed slope. The data show that lateral sorting is always the dominant sorting mechanism in bends, and bulk samples showed minor effects of vertical sorting by dunes as long as all grain-size fractions are mobile. An empirical bend sorting model was fitted that redistributes the available sediment fractions over the cross-section as a function of transverse bed slope. Comparison with field data showed that the model accurately reproduces spatially-averaged trends in sorting at the bend apex in single-thread channels. The bend sorting model therefore provides a better definition of bend sorting with conservation of mass by size fraction and adds to current understanding of bend sorting. The implication for numerical modelling is that bend sorting mechanisms can be modelled independently of dunes, allowing the application of the active layer concept.  相似文献   
20.
The vegetation has important impacts on coastal wave propagation. In the paper, the sensitivities of coastal wave attenuation due to vegetation to incident wave height, wave period and water depth, as well as vegetation configurations are numerically studied by using the fully nonlinear Boussinesq model. The model is based on the implementation of drag resistances due to vegetation in the fully nonlinear Boussinesq equation where the drag resistance is provided by the Morison’s formulation for rigid structure induced drag stresses. The model is firstly validated by comparing with the experimental results for wave propagation in vegetation zones. Subsequently, the model is used to simulate waves with different height, period propagating on vegetation zones with different water depth and vegetation configurations. The sensitivities of wave attenuation to incident wave height, wave period, water depth, as well as vegetation configurations are investigated based on the numerical results. The numerical results indicate that wave height attenuation due to vegetation is sensitive to incident wave height, wave period, water depth, as well as vegetation configurations, and attenuation ratio of wave height is increased monotonically with increases of incident wave height and decreases of water depth, while it is complex for wave period. Moreover, more vegetation segments can strengthen the interaction of vegetation and wave in a certain range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号